CP33-1

AUTODESK
UNIVERSITY

2004

Automating Boring Mundane Tasks Using
WindowsScriptHost

Gordon Price — albedoConsulting

A continuation of last year's WSH class; this time around we focus more on AutoCAD® -specific administration and
WSH-based AutoCAD automation, culminating in a script that builds an entire set of architectural base files, cross-
xrefed, layer-controlled, and ready to use. Don't let the architectural reference deter you, these scripts can be adapted
for use by anyone who finds them selves setting up projects the same way every time. And again, because we will be
using VBScript, everything you leam can be applied to programming AutoCAD or MS Office in VBA, or even
standalone applications in VB. This session is designed for CAD and IT managers who want to use
WindowsScriptHost and VBScript to help install and manage AutoCAD and AutoCAD-based products, and who want
to add functionality to help users manage projects and files. Users with an interest in customization who want another
way to make the computer do more will also benefit from this session.

Who Should Attend
CAD and IT managers, and intermediate-level users

Topics Covered

*WSH-based tools for automating everyday tasks

*WSH-based management of current AutoCAD installs, via Remote Scripts and Logon Scripts
* Script-based installs compared to the Network Installation Wizard

* Accessing lots of DWGs quickly with the AutoCAD DBX API

*WSH-based tools to automate schemes, xref management, and more

About the Speaker:

An AutoCAD® user since 1990 and a consultant since 1994, Gordon has most recently been the CAD manager at
Thomas Hacker Architects in Portland, Oregon. In October he returned to the wild world of consulting full time, focusing
on small-offices. His architectural experience includes work as a designer, job captain, and web developer. He is also
currently finishing his M.Arch at San Francisco Institute of Architecture.

www.albedoconsulting.com
gordon@albedoconsulting.com

Automating Boring Mundane Tasks Using WindowsScriptHost

What is included in this class?

e A quick general overview of WSH, VBScript and related components you are likely to make
use of writing basic System Administration and CAD Administration scripts, as well as scripts
to automate certain user tasks.

¢ Information on the different ways to interact with WSH based tools, and how to make them
available to users.

e A quick look at demos and example code for a couple of useful CAD Administration and User
scripts.

e Demos of some more complex scripts which are too large to print for the AU handout (but
which can be downloaded after the conference)

What we won't be covering includes WSC (Windows Script Components), ADO (database access),
ADSI & WMI (for advanced Windows system admin) or issues of connecting to applications like
Word or Excel.

What is WSH?

In a way, the better title for this class might have been Windows Script Technologies. This
encompasses the whole gamut of scripting tools and components, of which...

WSH (Windows Script Host) is just that, a HOST environment in which scripts in various languages
can execute. Internet Explorer is also a script host, as it can implement client side scripting.
However, for security reasons IE client side Scripting cannot access anything on the local machine
or domain, and so is useless as an administrative tool. IIS is also a script host, in that it supports
ASP (Active Server Pages), but ASP is also limited, this time to connecting with local databases and
modifying the HTML stream going to the receiving browser. Again, not much use for administrative
purposes. WSH was created specifically for System Administrators as an upgrade and replacement
for DOS BAT (batch) files. However, WSH is incomplete by itself. You also need...

VBScript, or another scripting language, which interacts with WSH via WindowsScript (part of the
0S). The scripting language gives you the basic programming language to create scripts, but
VBScript alone has no way to interact with useful parts of the OS, such as the File System. For that
you use the ability of WSH to access...

COM objects (Component Object Model). Applications that are COM enabled expose their internal
functions to outside control. By using WSH to connect to a COM object, you gain access to
whatever functionality that object exposes. Some examples of useful COM objects include...

Scripting.FileSystemObject - Manipulate files & folders.

ADO (ActiveX Data Objects) — Connect to a database.

CDO (Collaborative Data Objects) - E:mail functions without Outlook or Exchange.

ADSI (Active Directory Services Interfaces) — Network Administration, including ActiveDirectory,
Exchange, InternetlnformationServer, etc.

WMI (Windows Management Instrumentation) — Local system administration, user interface,
desktop settings, etc.

Shell.Application - Windows shell functions, including the BrowseForFolder dialog, Move & Copy
functions with status indication, etc.

AutoCAD, MS Word, etc. The standard application COM objects generally give you access to most
all features and commands available in the software, and can be manipulated either with the
application window visible or not.

AXDB15Lib - This activeX dll allows you to very quickly access AutoCAD DWG files, but with the
trade off of loosing access to any user interface features. It is useful when you need to modify a
large number of drawings quickly.

Some objects available only within the WSH environment, but which you will use much like COM
objects are...

Automating Boring Mundane Tasks Using WindowsScriptHost

WScript.Shell - Run (start) applications, create shortcuts, manipulate environment variables and
the Windows Registry.
WScript.Network - Manipulate network resources (shared printers & folders)

Also, you can use WindowsScriptComponents to create your own light weight COM objects, to
securely encapsulate business data in reusable code, create IE DHTML Behaviors, etc.

WSH/VBScript versions

Windows 98 1.0 (client side scripting in IE only)

Windows NT (part of SP4) 1.0

Windows ME 2.0 (WSH introduced, common version numbers)
Windows 2000 2.0

InternetExplorer 5.5 5.5 (VBScript only, WSH is still 2.0)

IIS 5 5.5

Windows XP 5.6 (Shared version humbers again)

Windows Server 2003 5.6

NOTE: Make sure you upgrade to WSH/VBS 5.6, especially in a mixed environment where you
might run scripts on Windows XP Pro & Windows Server 2000. Version 5.6 includes Regular
Expressions, which alone is worth the (free) upgrade. Version 5.6 also includes RemoteScripting
(running scripts on other machines), code signing for security, named Arguments (with WSF files
only) and StandardI/O for interacting with many Command Line tools. You can download 5.6 for
free.

Some VB terms & definitions

e Object - An item that has Properties and/or methods. An AutoCAD block is like an object.

e Class - Defines an type of object (the object is instantiated in VBese). An AutoCAD block
definition is similar.

e Property - A setting of an object that can be read or applied. Similar to the value of an
attribute in a block. Properties can control how an object behaves, how it looks, etc.

¢ Method - A task or command that an object can perform. An Xref has an Unload method.

¢ Event - A notification that something has happened, caused by the user, the OS or the
software. You can have your own Subroutine react to a specific event.

e Subroutine - A reusable bit of code that does a certain task. You can pass arguments to a
subroutine.

e Function - A Subroutine that returns a value is a function.

Comparison of VB/VBA & VBScript

For our purposes VB & VBA are the same. There are actually some differences, but you will
discover those if you move on to VB/VBA programming. In general VBScript is a stripped down,
simplified version of the others. Specifically...

e VBScript is ‘weakly typed’. In other words all variables are Variants, with the actual content
being of a particular ‘subtype’. The actual content of a variable can be determined, but any
variable can contain any type of data. This can lead to runtime errors if you are not careful.

e VBScript does not have an IDE (Integrated Development Environment). VBA & VB have
IDEs similar to the VisualLisp IDE in AutoCAD.

e VBScript does not support ‘early binding’. In the VB or VBA IDE you can ‘bind’ objects as
you code (early) and the IDE IntelliSense will provide you with the properties & methods of
that object as you code. VBScript doesn’t bind until you run the code (late). This again can
lead to runtime errors. Since there is no VBScript IDE, early binding would serve no
purpose.

Automating Boring Mundane Tasks Using WindowsScriptHost

e VBScript does not support ‘named arguments’. In VB and VBA you can pass and receive
arguments by name, but VBScript only supports ‘positional arguments’, so you have to
make sure you pass your arguments in the right order. Note that WSH does support named
arguments passed to the script, but between internal routines and functions you are limited
to positional arguments.

e VBScript has limited error handling. VB/VBA has the On Error Goto Label statement, which
is similar to error handling in Lisp. VBScript only has On Error Goto Next, which forces you
to deal with an error in the very next line of code.

e VBScript is slower that VB/VBA. This is because VBScript is not compiled code. Speed is
relative however, as this is only a comparison of the same code in VBA as compared to
VBScript. When you compare the time it takes to do a task manually, which is what you will
use WSH to automate, then VBScript is lightning fast.

e VBScript doesn’t support a number of VB/VBA features such as Optional arguments, Option
Base for Arrays, etc. See the VBScript Help file for more details.

e In the context of WSH, VBScript is not generally ‘event driven’ so much as ‘task driven’.
Most scripts will set out to do something, perhaps based on a passed argument, or user
input, or perhaps not. It is possible to create scripts that listen for events, you can sink
events from IE for example, and an HTA is fully event driven, but for the majority of WSH
scripts the only ‘event’ is starting the script.

e VBScript has Regular Expressions, which are NOT included in VB/VBA.

Scripting & Security

Given the prevalence of viruses, and especially script based viruses, some discussion of script
security is required. Of course good anti virus software and regular virus definition updates are
assumed, but this does not protect you from viruses not yet identified by the anti virus companies,
nor does it protect you from staff running scripts that are not viruses but that you still don't want
being used.

The details of scripting security are beyond the scope of this class, but some basic ideas are worth
noting.

e Use WSH & VBScript 5.6, as this version has much better security capabilities.

e Windows XP is also much more secure, and flexible in application of security, than older
versions of Windows, especially Windows 9X.

e If you already have a digital certificate you can use this to sign your own scripts. If you
don’t already have one, you can get buy one from Verisign or another Certificate Authority,
or get one from your own Certificate Server.

e If you use Windows XP you can limit script execution to specific read only folders using
Software Restriction Policies. If you are running Windows Server 2003 you can manage
Software Restriction Policies using Group Policy.

Other Script Engine options

For the purposes of this class we will focus on VBScript as our scripting language. This has the
added benefit of making what you do in WSH a learning opportunity for VB/VBA. However, there
are things that other scripting languages do better (text handling in Perl and true compiled code in
Jscript for example) and if you have a task that VBScript isn‘t up to, by all means look at other
scripting languages. With WSH 5.6 you can access a subroutine or function written in one language
from a main script written in another, so you could tie together a Perl subroutine and JScript
function with a VBScript main script. Those other components might even be things you
downloaded or had someone else write. That said, some of the other Script Language options are:

e Jscript (aka JavaScript, aka ECMAScript, included with WSH)
e Perl

Automating Boring Mundane Tasks Using WindowsScriptHost

e Python
e Rexx
File Types

WSH scripts can be implemented either in language dependent files (simple) or XML based
language independent files (more complex, and more powerful). You will probably use both
eventually. These files include...

VBS - Basic language dependent script file containing only VBScript code. A VBS file (and any
language dependent file) can contain script in Functions and/or Subroutines that can be called from
within the script, or from another script in a WSF file. A language dependent file can also contain
script code that is not part of a Function or Subroutine, and is executed when the file launched.

JS - Basic language dependent script file containing only JScript code.
PLS - Basic language dependent script file containing only PerlScript code.

WSF - Language independent XML based WindowsScriptFile which can contain a single script (and
Subroutines/Functions) in any language, or multiple scripts in multiple languages, each identified
as a different ‘job’, all tied together with XML to make it work. Each job within the script can be
called independently via WScript or CScript. Only a WSF file can reference ‘source’ files, also known
as ‘includes’. Source files allow you to reuse code by having multiple jobs or multiple WSF files
reference the same ‘source’ files and make use of the Subroutines & Functions found there. Only
language dependent files can be used as source files. Note that routines in one job are not
available to other jobs. Source files are the only way to share code between multiple jobs or files.

Code Execution
There are a number of different ways to actually execute script code.

e CScript (Command Script) WSH execution via the Command Prompt — When a script will
execute in the background transparent to the user, use CScript. With CScript you can use
command line switches to run in batch mode with error messages and user prompts
suppressed, run in debug mode, etc. Also, when running via CScript WScript.Echo
commands will echo to the Command Prompt (rather than multiple msgBox windows), so
lots of echos are easier to deal with. Lastly, if you want to schedule a script using Windows
Scheduled Tasks (which usually means no user intervention) then you will want to use
CScript. CScript is usually best used for System Administration type scripts, such as a
scheduled script to parse a series of log files looking for certain types of items and leaving
the compiled information in a text file for you to look at the next day. For scripts that a user
will need to interact with you will probably use WScript. Using CScript will result in the
Command Prompt being visible for the duration of the script, even if the actual execution of
the script was started with a shortcut. In general, CScript is much more like BAT file
execution.

e WScript (Windows Script) WSH execution via the Windows interface - If you don't
specifically need the silent execution of CScript or the ability to echo to the Command
Prompt you will probably use WScript. Unless you specifically change file affiliations, all WSH
files execute with WScript by default for this reason.

User Interface

While CScript & WScript offer the Command Prompt and the messageBox & inputBox functions, you
will sometimes need more UI than this. On these occasions you have two options.

e Internet Explorer - Because IE is a COM enabled application, you can use WSH to drive IE
externally, providing a much more robust place to dump text than either the Command

Automating Boring Mundane Tasks Using WindowsScriptHost

Prompt of CScript execution or a messageBox. You can use IE in this way for both user
input and output, however, there are some limitations. Because the script and IE are
running separately, if you close the browser window the script continues unless you include
code to terminate the script as well. If you don’t terminate the script then the lack of an IE
object can cause errors, not to mention ruining the user experience. The basic page design
can be done in FrontPage or another HTML editor, but you have to manage the HTML
stream for any dynamic aspects, and your application now involves two files, the actual
script and an HTM file for the UI. To avoid this you can use...

HTA - An HTA (HyperText Application) is simply an HTML document with the extension
changed to HTA. The HTA file contains all the required HTML code to build the page, as well
as the script code you would have put in a VBS or WSF file. In an HTM file, you have two
things to deal with, the full IE user interface that has no relevance (the Forward & Back
buttons for example) and the fact that for very good security reasons the script code in a
web page can’t access many objects (the FileSystemObject for example) and many things
that you can do include a security warning for the user. In HTA mode, the entire IE user
interface is stripped away, leaving the HTML window for you to create your own interface,
and all code that would work in a VBS file will work in an HTA file. And because you are now
building your script into HTML, your scripts become fully event driven. Lastly, you can use
FrontPage, or even MS Word in a pinch) to create your HTM file, then add your script and
change the extension. HTA allows you to create full featured applications with a rich user
interface, all with tools you already have at your disposal.

User Access

users should not be getting direct access to your scripts, but rather using shortcuts (LNK files) to
your scripts or similar methods to keep users one step removed from the actual script files.
Depending on how the script is going to be used, there are a number of ways of giving your users
access to those shortcuts.

Working with files & folders
When the user will pick files or folder to be dealt with in some way, you can...

Drag’'n’drop to shortcut — Provide your user with a shortcut (on the desktop, on a
network share, etc.) to which they drag’n’drop their selected files or folders to be handled
by the script. Because the user could select the wrong kind of item your script must deal
with this, as well as when your user just clicks the shortcut (i.e. nothing sent as an
argument to the script)

SendTo - Put your shortcut in the user’s SendTo folder. This is similar to drag’n’drop, with
a common, logical location for the script shortcuts. Note that all the default SendTo
functionality actually sends your selected files or folders to another location. If your script
just manipulates the item where it is, the SendTo option can be confusing for users. Also
remember that the SendTo folder is unique for each user, and there is no All User SendTo.
And if you don’t have Roaming Profiles enabled a user will not have the SendTo options they
expect when they change machines, unless you standardize all machines with the same
SendTo options.

Windows Context Menu - when your script is intended to only handle items of one type
(folders, or BAK files, for example) you can add your script as an ‘action’ for that file type,
which then becomes available as a right click Context Menu option (and could be the Default
action as well). Windows handles limiting file types, and makes a separate call to your script
for each item, so you don’t have to deal with looping through arguments. Because this is
implemented in the HKEY_CLASSES_ROOT section of the registry they are available to all
users on the machine, and are not part of a particular user’s roaming profile. Look at my
web site soon for a white paper with more detail about this.

Automating Boring Mundane Tasks Using WindowsScriptHost

Working like a traditional application
When your script will act like a traditional application, you can...

e Shortcut on a network share - Quick and easy.

¢ Integrate with the OS - Here you place a shortcut to the script on the desktop, in the
Startup menu or in the QuickLaunch toolbar. Where the shortcut goes depends on script
usage and perhaps user preference.

¢ Integrate with another application - Most applications have the ability to run an
external application. For example your script could be launched with a toolbar button in
Word or AutoCAD. An ‘AutoSave Recover’ application might be a good candidate.

Working like a Service

Sometimes you have a script that needs to monitor a situation and react to changes. In this case
you want your script to emulate a Windows Service, quietly waiting for the proper situation and
then acting. While a script cannot be a true service you can get the effect by placing your code in
an intentional eternal loop. The script will seem to wait quietly, checking the situation with each
cycle of the loop, and taking action when appropriate. It is usually a good idea to use the
Wscipt.Sleep method to manage your loop, as it takes up very little processing power, and allows
you to control your script like a timer. Because you are using an endless loop, you need to provide
some mechanism for stopping the script. The sledge hammer approach is to kill the script with
Task Manager. Another more graceful approach is to monitor the value of an environment variable,
and exit the loop when the variable changes. Then create another script to change the variable.
You run the second script to stop the first.

As a Scheduled Task
You can use Task Scheduler to run your scripts at preset times. You can even use scripts to setup
the scheduled task.

Run at Startup
If you need your script to run when a user starts a machine or logs on, you can do it a number of
ways.

e You can run your scripts from your logon BAT file, or even replace the BAT file with a VBS
logon file, which then calls your scripts that you want run.

e You can add a LNK to your script to the user Startup folder. This can be used to mimic
Domain Logon Scripts on a Peer to Peer network.

e You can edit the registry to add your script as a run once item. This happens before logon,
which you sometimes need.

Script access installation

There are a number of different ways to roll out your scripts for users, depending on you network
setup and how you intend to make the scripts available to users.

e Place script shortcuts on a network share. This is by far the simplest method as once you
add a shortcut to the shared folder your users have instant access. However, it is not
particularly convenient, and not at all integrated with the OS and other applications.

e ‘Install Scripts’ can be used to copy script shortcuts to the user’s SendTo, Startup & Start
Menu folders, as well to the QuickLaunch toolbar or the Desktop. An install script can also
be used to set up Shell Extensions and scheduled tasks. You can make install scripts
available on the network, or you can e:mail them (yes, you can modify the Outlook Security
settings with a script), or run them manually yourself from each machine.

Automating Boring Mundane Tasks Using WindowsScriptHost

e Logon scripts can be used to run install scripts. This works best if you use a text file or
database to log who has successfully run your install, so that the install procedure is not run
more than once for each user, and so you know when you can remove the reference to the
install script from the logon script. And of course logon scripts can be VBS files now. One
trick is to add some code to your VBS based logon script that looks in a particular network
location for a shortcut called username.LNK on the network which points to the actual install
script and runs it if found. The install script then looks for the same shortcut and deletes it,
after successfully completing the install. The administrator simply adds LNK files for each
user that needs an install. When all the installs have completed all the LNK files will be
gone, ready for the next round of installs. The effect is much like the Run Once registry
setting.

e Remote scripts. You can use WSH to run an install script on a remote machine. From your
Admin machine you could loop through a list of all the machines in your office, running the
install script on each one in sequence. The limitation is the user running the ‘controller’
script must have local admin rights on the remote machines running the ‘worker’ script, and
a registry setting must be made on each machine that will run a ‘worker’ script. Once this
setup is done, Remote Scripts can offer a lot of other nice features.

If you are running Windows Server you can do some other tricks that make installation and
management easy.

e You can map the Desktop (and My Documents, by the way) to a network location. Now you
can just copy a shortcut to everyone’s Desktop folder (with a script, of course) from the
server. This also makes it easy to back up everyone’s Desktop and My Documents folders,
though you need room on the server for this extra data.

One other nice trick here. Since the Desktops are now on the server, you could add a
SendTo ‘Other User Desktop’ option via WSH. The script could give a list of desktops and
the user selects which one or ones the file goes to, and those users will see the file beam
down onto their desktop. At a minimum you administrators should be able to dump stuff to
your users’ desktops.

e With Roaming Profiles you have similar access to the users’ SendTo, Startup, Start Menu
and QuickLaunch folders. The users won’t see added tools until their next logon, however.
With Roaming Profiles you can use the ‘Script deletes its own shortcut’ trick by putting the
shortcut in the Startup folder for each user.

One trick for System Administrators to think about. If you find yourself with a lot of admin scripts,
try this. Add your network script share to the PATH environment variable for the Administrator
user, or add some code to the Administrator logon script to add your script folder to the Volatile
(current session only) PATH environment variable. Now when you logon as Administrator you can
run your scripts from the Command Prompt with no path!

Longhorn, .NET & MSH

Monad is the code name for MSH (MicrosoftScriptHost?), the .NET flavor of WSH to be included in
the next version of Windows. Actually it is the Longhorn Shell, so it encompasses both WSH type
functionality, along with command line stuff, and is integrated with .NET. In short, WSH is going to
get more powerful, and yes more complicated, but it is not going to die. And MSH will allow you to
learn .NET stuff on the cheap, which you can then apply to learning VB.NET programming later,
much like your VBScript knowledge can later be applied to learning VBA/VB.

Automating Boring Mundane Tasks Using WindowsScriptHost

Conclusion

I hope this class has provided you with some scripts that you can take back with you and apply
immediately, as well as some ideas as to how you could make use of WSH to develop your own
scripts to deal with boring and mundane tasks, leaving you more time to do something interesting.

Thank you.

Further Reading

VBScript In A Nutshell, 2nd Ed.

Paul Lomax, Matt Childs & Ron Petrusha

O’Reilly & Associates

Overview and reference for VBScript 5.6 with some info on using VBScript in WSH, as well as InternetExplorer

Microsoft Windows 2000 Scripting Guide

The Windows Resource Kit Scripting Team

Microsoft Press

Actually covers WSH/VBScript 5.6, even if it is a ‘Windows 2000’ book. Good coverage of WSH, ADSI, WMI etc. Also
includes accessing the Windows Shell, Windows API, and basic good programming conventions.

Microsoft Office XP Developers Guide
Microsoft Press
MS Office VBA, but gives you the basics for driving these apps from WSH

Managing Enterprise Systems with the Windows Script Host
Stein Borge

Apress

Good overview of basic WSH, ADSI & WMI scripting

Newsgroups

@ msnews.microsoft.com
microsoft.public.scripting.vbscript
microsoft.public.scripting.wsh
microsoft.public.server.scripting

Web sites

Microsoft® Windows®2000 Scripting Guide
www.microsoft.com/resources/documentation/windows/2000/server/scriptguide/en-
us/sagsas overview.mspx

Windows XP Software Restriction Policies whitepaper
www.microsoft.com/technet/prodtechnol/winxppro/maintain/rstrplcy.asp

MSDN Scripting web site (downloads, help files and more)
msdn.microsoft.com/scripting

Clarence Washington’s Script Repository (win32scripting)
cwashington.netreach.net

WindowsScript at MSN Groups
groups.msn.com/windowsscript/

My website, for demo downloads and future info
www.albedoconsulting.com

Automating Boring Mundane Tasks Using WindowsScriptHost

LR R I I I I I I b I I R I R R I I I R I R I I I I I I I I IE I b b b IE b IE b I I E b b b b I b b b i i

'* Script Name:

"% Created: 1999

'* Author: Gordon Price

'* Purpose: Convert passed list of BAK fA;es to DWG files
'* Usage: Place shortcut to scr‘pt in SendTo folder

" User selects files, right clicks and chooses
' shortcut from SendTo menu

'* History: 09.20.2003 - Revised by GP to use For Each loop

Tk ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ko ok ko ok ok ok ok ok ok ok ok ok ko ok ko ok ko ok ok o ok ok ok ok ok ok ko ok ko ok ok ok ok ok ok ok ok ok ok ok ok
Option Explicit

1k ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok K o ok ko ok ok ok ok ok ok ok ok ok ok ko ok ko ok ok o ok ok ok ok ok ok ok ok K o ok ko ok ok ok ok ok ok ok ok K ok ok
'* Variables
Dim objArguments
Dim objFileSystem
Dim objSourceFile
Dim strArgument

Tk ok ok ke ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ko ok ko ok ok o ok ok o ok ok ok ok ok ok ko ok ko ok ko ok ok ok ok ok ok ok ok ok ko ok ko ok ok ok ok ok ok ok ok ok ko ok
'* Main Script

' create basic objects
Set objArguments = WScript.Arguments
Set objFileSystem = CreateObject("Scripting.FileSystemObject")

' loop thru the arguments list
For Each strArgument In objArguments

' start Error trap

On Error Resume Next

' set source file to the next argument

Set objSourceFile = objFileSystem.GetFile (strArgument)

' if no Error then we have a file, not a folder or missing file

If Err.Number = 0 Then

'if the passed object is a BAK file copy to DWG & incrament success counter
If objSourceFile.type = "BAK File" Then objSourceFile.Name = objSourceFile.Name & "

End If
clear the Err object and continue For Each loop
Err.Clear
Next

1

LR R I I I I I I I I I I I I I I R I I I I R I R I I I I I I I I I b 2 IR I E b E I I E I b b b b I b b i i i
'* Script Name: bak2dwg shell.vbs

'* Created: 8.24.1999

'* Author: Gordon Price

'* Purpose: Convert pa

'* Usage: Implement

"o (See Shell ‘.ﬂ“c)

'* History: 09.20.2003 - Revised by GP to use For Each loop

' 10.27.2003 - Revised by GP for ShellExtension usage

Tk k ko ok ok kX K ok ok ok kK K o ok ok ok Xk o ok ok ok kK o ok ok ok kK o ok ok ok ok Xk o ok ok ok kK ok ok ok ok Xk o ok ok ok kK ko ok ok ok X K o ok ok ok kK ko ok ok
Option Explicit

1ok ok ook ok ok ok ok ok ok ok ok ko ok ok ok kK ok ok ok ko ok ok ok ko ok ok ok ok ko ok ok ok ko ok ok ok ok ko ok ok ok k ko ok ok ok kK ok ok ok kK K o ok ok ok
'* Variables

Dim objArguments

Dim objFileSystem

Dim objSourceFile

1ok ok o ok ok ok kK ok ok ok ok ko ok ok ok kK ok ok ok ko ok ok ok ko ok ok ok ok ko ok ok ok ok ko ok ok ok ok ko ok ok ok k ko ok ok ok kK ok ok ok kK K o ok ok ok
'* Main Script

' create basic objects

Set objArguments = WScript.Arguments

Set objFileSystem = CreateObject("Scripting.FileSystemObject")

' start Error trap

On Error Resume Next

' set source file to argument (0)

Set objSourceFile = objFileSystem.GetFile (objArguments (0))

If Err.Number = 0 Then objSourceFile.Name = objSourceFile.Name & ".dwg"

10

.dwg"

Automating Boring Mundane Tasks Using WindowsScriptHost

"k

Constants
Const WINDOW_ HANDLE = 0
Const NO_OPTIONS = 0

variapbles

Dim objArguments
Dim objFileSystem
Dim objWSHShell
Dim objWindowsShell
Dim objShortcut
Dim objFolder

Dim objFolderItem
Dim objFile

Dim strFavoritesPath
Dim strFolderPath
Dim strArgument

'* Main Script

Set objArguments = WScript.Arguments

Set objFileSystem = CreateObject("Scripting.FileSystemObject")
Set objWSHShell = CreateObject ("WScript.Shell")

Set objWindowsShell = CreateObject("Shell.Application")

' get the User's Favorites folder
strFavoritesPath = objWSHShell.SpecialFolders ("Favorites")

1

user input: folder a g cain new LNKs

Set objFolder = objWindowsShell.BrowseForFolder (WINDOW_HANDLE, "Select a folder: ", NO_OPTIONS,
strFavoritesPath)

Set objFolderItem = objFolder.Self

strFolderPath = objFolderItem.Path

' loop through arguments
For Each strArgument In objArguments

If objFileSystem.FileExists (strArgument) Then

If (LCase (Right (strArgument,4))) = ".1lnk" Then
objFileSystem.MoveFile strArgument, strFolderPath & "\"
Else

Set objFile = objFileSystem.GetFile (strArgument)
strLinkPath = strFolderPath & "\" & objFile.Name & ".lnk"
Set objShortcut = objWSHShell.CreateShortcut (strLinkPath)
objShortcut.TargetPath = strArgument
objShortcut. Save
End If
End If
If objFileSystem.FolderExists (strArgument) Then
Set objFolder = objFileSystem.GetFolder (strArgument)
strLinkPath = strFolderPath & "\" & objFolder.Name & ".lnk"
Set objShortcut = objWSHShell.CreateShortcut (strLinkPath)
objShortcut.TargetPath = strArgument
objShortcut. Save
End If
Next

11

Automating Boring Mundane Tasks Using WindowsScriptHost

R e e R R R

'* Script Name:

1% .

'* Author:

'* Purp

"k

1% E

"o 4 t o \C) Fo 7 o ice older structure
'x S« >t does not : SS ¢ r 1d or empty folder

'* History:

LR R I I I I I I I I I I I R I R I I I I I I I I I I I I I E E h I b I IE b E b b b h b b b b b b b b b b b

Option Explicit

L e e R R R

'* Variab

Dim objFileSystem

Dim objActiveJobsFolder
Dim objSubFolderList
Dim objFolder

Dim intCurrentYear
Dim intLastJobYear
Dim intLastJobNumber

Dim strActiveJobsFolder
Dim strLastFolder

Dim strNextJobNumber
Dim strJobName

Dim strJobFolder

LR I I I E I I I I I I I I b I I I I I I I I E I I dE h E b b E b b dE b E b b b b b b b b b b b b b b b

Main Script

Set objFileSystem = CreateObject("Scripting.FileSystemObject")

Set objActiveJobsFolder = objFileSystem.getFolder("C:_Projects\Active Jobs")
Set objSubFolderlList = objActiveJobsFolder.subFolders

' get the current year
intCurrentYear = Year (Date)

job# of the
only fol

at 1 p strLastFolder
For each objFolder in objSubFolderList

strLastFolder = objFolder.Name
Next

' extract the year & job#
intLastJobYear = CInt (Mid (strLastFolder,1,4))
intLastJobNumber = CInt (Mid (strLastFolder,6,2))

st then incre

the next job# 11 be the same year as the

if intCurrentYear = intLastJobYear then
strNextJobNumber = CStr (intLastJobNumber + 1)
if Len(strNextJobNumber) < 2 then strNextJobNumber = "0" & strNextJobNumber

strNextJobNumber = CStr (intCurrentYear) & "." & strNextJobNumber

' otherwise start a new year with Jjob# 01
else

strNextJobNumber = CStr (intCurrentYear) & ".01"
end if

' get the project name from the user
strJobName = InputBox("What is the name for project " & strNextJobNumber & "?",
"AU project folder builder")

12

Automating Boring Mundane Tasks Using WindowsScriptHost

' if no job name then explain to user and exit
If strJobName = "" Then
msgBox "No job name entered"

Wscript.Quit

End If

' set the new job nan

strJobFolder = objActlveJobsFolder Path & "\" & strNextJobNumber & " " & strJobName
' Build the fol

objFileSystem.creaﬁeFolder(strJobFolder)

objFileSystem.createFolder (strJobFolder & "\00 ad")
objFileSystem.createFolder (strJobFolder & "\01 ma")
objFileSystem.createFolder (strJobFolder & "\02 pd")
objFileSystem.createFolder (strJobFolder & "\03 sd")
objFileSystem.createFolder (strJobFolder & "\04 dd")
objFileSystem.createFolder (strJobFolder & "\05 cd")
objFileSystem.createFolder (strJobFolder & "\06 bd")
objFileSystem.createFolder (strJobFolder & "\07 ca")
objFileSystem.createFolder (strJobFolder & "\08 po")
objFileSystem.createFolder (strJobFolder & "\09 ss")

Sub CleanFolders (objFolder, strFlleTypes, blnRecurse)

'* Variables

Dim objFile

Dim objSubFolder

Dim objRegularExpression

' initialize Regular Expr
Set objRegularExpression = New RegExp
objRegularExpression.IgnoreCase = True

objRegularExpression.Pattern = strFileTypes

loc yh S e that match Regular Expr
For Each ObjFlle in objFolder Files

If objRegularExpression.Test(objFile.Name) Then objFile.Delete
Next

1

then call self for sub fol

if recursior
If blnRecurse Then
For Each objSubFolder in objFolder.SubFolders
CleanFolders objSubFolder,strFileTypes,1
Next
End If

End Sub

<job>
<script language="VBScript" src="foldercleanup.vbs">

13

Automating Boring Mundane Tasks Using WindowsScriptHost

Option Explicit
Dim objArguments

Dim objFileSystem
Dim objFolder

Dim strArgument

Set objArguments = WScript.Arguments
Set objFileSystem = CreateObject("Scripting.FileSystemObject")

On Error Resume Next

For Each strArgument In objArguments
Set objFolder = objFileSystem.GetFolder (strArgument)
If Err.Number = 0 Then CleanFolders objFolder, " (.bak)$",0
Err.Clear

Next

</script>
</job>

<job>
<script language="VBScript" src="FolderCleanup.vbs">

Option Explicit

Dim objArguments
Dim objFileSystem
Dim objFolder

Dim strArgument

Set objArguments = WScript.Arguments
Set objFileSystem = CreateObject("Scripting.FileSystemObject")

On Error Resume Next

For Each strArgument In objArguments
Set objFolder = objFileSystem.GetFolder (strArgument)
If Err.Number = 0 Then CleanFolders objFolder,"” (\w{3}_) |junk]| (.bak|.tmp)$",61
Err.Clear

Next

</script>
</job>

14

Automating Boring Mundane Tasks Using WindowsScriptHost

<Job id="Project Archive">
<script language="VBScript" src="FolderCleanup.vbs"/>

"

Option Explicit

Const ROOT_ACTIVE FOLDER = "C:_Projects\Active Jobs"
Const ROOT_ARCHIVE FOLDER = "C:_Projects\Completed Jobs"
Dim objArguments

Dim objFileSystem

Dim objSourceFolder

Dim strArgument

Dim strJobYear

Dim strJobNumber

Dim strJobFolder

Dim strSourceFolder

Dim strDestinationFolder

Set objArguments = WScript.Arguments
Set objFileSystem = CreateObject ("Scripting.FileSystemObject")

For Each strArgument In objArguments

If objFileSystem.FolderExists (strArgument) Then Set objSourceFolder =
objFileSystem.GetFolder (strArgument)

If objSourceFolder.ParentFolder.Path = ROOT_ACTIVE_ FOLDER Then
strJobYear = Left (objSourceFolder.Name, 4)
If objFileSystem.FolderExists (ROOT_ARCHIVE_ FOLDER & "\" & strJobYear) Then
CleanFolders objSourceFolder,"# (\w{3}_) |junk| (.bak|.tmp)$", 1
strDestinationFolder = ROOT ARCHIVE FOLDER & "\" & strJobYear & "\" & objSourceFolder.Name
objSourceFolder.Move strDestinationFolder

Else
msgBox "Archive not yet allowed."
End If
Else
msgBox "This is not a Project Folder!"
End If
Next
</Script>
</Job>

15

