

 November 30 – December 3, 2004 ◊ Las Vegas, Nevada

 The AUGI® LISP Forums Greatest Hits for Newbies
Peter Jamtgaard P.E. – Cordeck Sales, Inc.

CP24-1 The AUGI LISP Forum is an online community of AutoCAD® users who exchange information and help each other
learn LISP programming, solve problems, and improve productivity. In this course, we'll review a collection of basic,
member-developed AutoLISP® and Visual LISP® routines to familiarize you with techniques such as defining
functions, entities, ActiveX manipulation, and more. We'll demonstrate and thoroughly explain each program and take
your questions. We'll also take your suggestions and develop a new routine using these techniques to demonstrate
how to create your own tools. This session is designed for beginning LISP programmers.

Who Should Attend
Beginning-level LISP programmers

Topics Covered
* Defining functions
* Lists
* Variable types
* User input
* Command line-driven functions
* Entities and entity lists
* ActiveX object manipulation

About the Speaker:
Peter has 18 years of experience running AutoCAD® in a multidiscipline environment, including Civil Engineering,
Structural Engineering, Mechanical, Architectural, and many others. He has served on the AUGI® Board of Directors
and is the AUGI programming chair. Peter has been programming AutoLISP® for 18 years and is experienced with
VB(A). He holds an Associates degree in Civil Engineering Technology, a B.S. degree in Civil and Environmental
Engineering and is a licensed Professional Engineer in the State of Wisconsin.

Email: cordeck@acronet.net

The AUGI® LISP Forums Greatest Hits for Newbies

2

Example 10: Layerzero.lsp

LayerZero.lsp is a routine that will change a single selected entity to layer “0” using an old fashioned AutoLISP
entity list modification technique. Before the introduction of Visual LISP® this was the way most object modification
was performed.

; This routine will change a selection to layer “0” using Entity List modification
(defun C:LayerZero (/ lstSelection ; list of selected item and selection point
 entSelection ; Entity name of selection
 lstEntity ; Entity List of selection
)
(if (setq lstSelection (entsel “\nSelect item on screen: “))
 (progn
 (setq entSelection (car lstSelection)
 lstEntity (entget entSelection)
 lstEntity (subst (cons 8 “0”)(assoc 8 lstEntity) lstEntity)
)
 (entmod lstEntity)
)
)

A semicolon “;” in front of a line in a routine is a comment and will not be evaluated at runtime.

To create a new command LISP has the “define function” expression defun. The defun Expression has this
format: (defun symbol ([arguments] [/ variables...]) expr...) .

In the above routine the defun expression defines the new symbol function named LayerZero. The C: in front of
the routine name means the routine will be available at the command line. (It does not mean the C drive on your
computer.) Since it is a command line function it will have no arguments passed to it. It has three local variables
lstSelection, entSelection and lstEntity. A local variable is set to nil at the beginning of the routine and reset to
nil at the end of the routine, and will not affect other variables with the same name in other routines. The symbol nil
means nothing or the variable is empty. To improve readability I have decided to use a standard variable naming
technique that uses prefixes to identify variable types. It is commonly known as Reddick variable naming
conventions.

The first local variable lstSelection is a list. Lists are groups of different values that are stored together in a specific
order. The list expression hes the form (list [expr...]). The prefix lst helps your recognize it as a list. The
second local variable is entSelection. The prefix ent helps you recognize it as an entity name. Every object in a
drawing has a unique entity name and that is how programs can access and modify them. The third local variable
is lstEntity. It is also a list, but also a special kind of list called an entity list. An entity list is a series of pairs or sub-
lists that describe the entity. To elaborate lets step through the routine listed above.

(entsel “\nSelect item on screen: “) .This expression prompts the user to “Select item on screen: “,
and the little \n instructs the prompt to appear on a new line. When the user selects an entity on the screen it will
return a list of the entity name and a list representing the point selected. For example:

(<Entity name: 7efa4dc8> (467.375 257.063 0.0))

The above routine has the expression (setq lstSelection (entsel “\nSelect item on Screen: “)).
The setq expression sets the variable lstSelection to the value returned from the entsel expression. Reading lisp
is very similar to reading a mathematical expression in algebra, you solve the innermost expression first.

 Insert Class Title as per Title Page

 3

The setq expression has the format (setq sym expr [sym expr]...). The sym or variable name is set to
each following expression. Multiple items can be set within one setq expression. The variables entselection and
lstEntity are both set inside one setq expression in the example.

 The setq expression is inside an if statement. This is called nesting or putting one expression inside another. The
if expression has the format (if testexpr thenexpr [elseexpr]). The testexpr is the (setq lstSelection…)
shown above and the thenexpr is surrounded by the progn expression. The progn expression is necessary to
group together the expressions of the thenexpr.

It the user doesn’t select anything or cancels the routine the testexpr expression will return a nil. In that case the
routine needs to stop. The if statement recognizes the nil as a false condition and jumps over the thenexpr to the
end. In the case of anything but nil is considered the true condition and it proceeds with the entity modification.

In this example the item in this list lstSelection that we are interested in is the entity name and to access it we
need to use the lisp expression car inside the (setq entSelection (car lstSelection)…) expression. The
car expression refers to the A register or simply the first item in a list or pair. (In this routine there is also the
expression cdr which refers to the D register or simply everything else except the first item in a list or the second
item in a pair.)

Once the routine has the entity name it needs to convert the entity name into its corresponding entity list. Like I
mentioned above the entity list is a list of pairs or sub-lists that describe the entity. The entget expression has the
format (entget ename [applist]). In this example the variable lstEntity is set to be the entity list of the
variable entSelection in the setq expression: (setq … … lstEntity (entget entSelection) … …)

Entity lists look similar to this example:
((-1 . <Entity name: 7efa4dc8>) (0 . "CIRCLE") (330 . <Entity name: 7efa0cf8>) (5 . "1BC9")
(100 . "AcDbEntity") (67 . 0) (410 . "Model") (8 . "TEST") (100 . "AcDbCircle") (10 460.75
320.5 0.0) (40 . 64.9358) (210 0.0 0.0 1.0))

As you can see there are dotted pairs of items and sub-lists inside an entity list. In this case it is the entity list of a
circle. The first item in each pair or list is what is called a dxf code. Each dxf code represents a specific property of
the entity. Like the -1 code is the entity name, the 0 dxf code is the entity type, the 5 dxf code is a unique permanent
string handle of the entity, the 410 dxf code is the layout name the entity resides, the 8 dxf code is the layer
name, the 10 dxf code is the center point of the circle, the 40 dxf code is the radius of the circle, and the 210 dxf
code is the normal of the entity. The other dxf codes refer to the owners and object inheritance that is above the
scope of this class. Dotted pairs are similar to lists but only have 2 items.

The purpose of the above routine is to change the layer of the selected item to be layer “0”. To do this using
AutoLISP the routine need to substitute a different dotted pair into the objects entity list and then modify the entity.

To change the layer the routine needs to use the substitute expression subst, along with a few more new
expressions. In the above routine we used the expression in the format

 (setq … … … … lstEntity (subst (cons 8 “0”)(assoc 8 lstEntity) lstEntity))

The expression cons creates a dotted pair. So (cons 8 “0”) returns ‘(8 . “0”) . The assoc expression will
return a corresponding dotted pair from list. In this case we need the layer or 8 dxf code pair. The subst expression
has the format (subst newitem olditem lst) So we subst the ‘(8 . “0”) pair for the example

The AUGI® LISP Forums Greatest Hits for Newbies

4

‘(8 . “TEST”) in the entity list, and then the entmod expression as shown above as (entmod lstEntity)
modifies the object on the screen and the routine ends!

To load and use this routine you will need to place this routine inside an ascii text file and save it as layerzero.lsp.
Be sure to save it into a directory that is inside your file search path. To locate your the search path go to options
command and under the file tab and under the Support Files Search Path selection. (My suggestion is to create a
new directory on your machine that is called C:\LISP and then add it to your search path. Place all of your lisp
routines there.) From the command line inside AutoCAD® you can type (load “LayerZero”) to load the above
routine and (load “anylispfilename”) to load any other routines you have.

Now that was old fashioned AutoLISP programming, but with the release of AutoCAD® 2000 came Visual LISP®
to the rescue! Visual LISP® gave the lisp programmer over 1000 new functions to manipulate entities that had only
previously been available to VB(A) programmers.

Before we jump into Visual LISP® it would be good to take a minute to explain what a vla-object is. A vla-object is
the implementation of a concept called encapsulation. Encapsulation is the packing together of all of the properties
and methods (actions) for an entity (hereafter referred to as a vla-object or just object). An example of a object
property is its layer, and an example of a method is copy. To examine an objects properties and methods we need
to create a new routine VDOT.lsp.

Example 9: VDOT.lsp
(defun C:VDOT (/ lstSelection ; list of selected item and selection point
 entSelection ; Entity name of selection
 objSelection ; VisualLISP ActiveX object (vla-object) of Selection
)
 (vl-load-com)
 (if (setq lstSelection (entsel “\nSelect item on screen: “))
 (progn
 (setq entSelection (car lstSelection)
 objSelection (vlax-ename->vla-object entSelection)
)
 (vlax-dump-object objSelection ‘T)
 (textscr)
)
)
)

The new routine name is C:VDOT and a I have added a new local variable called objSelection. The obj prefix
designates a vla-object. For individuals who are running pre-AutoCAD 2004 the expression (vl-load-com) need
to be added to the routine. (This expression needs to be run at least once during a drawing editing session. It loads
the Visual LISP® functions into memory.) You might find this routine looks very similar to the previous example,
and it is. This new routine converts the entity name into a vla-object, (instead of an entity list), using the (setq
objSelection (vlax-ename->vla-object entSelection)) expression. The VLAX prefix means Visual LISP Active
X. It next calls the (vlax-dump-object objSelection ‘T) to dump (display) to properties on the text screen and (with
the ‘T) also the methods available for the object. The (textscr) expression switches the focus of AutoCAD to the
text screen.

 Insert Class Title as per Title Page

 5

I tested this routine on the same circle I used for the entity list above and it returns this.

Select object to examine methods and properties:
Select Object:
; IAcadCircle: AutoCAD Circle Interface
; Property values:
; Application (RO) = #<VLA-OBJECT IAcadApplication 00af9594>
; Area = 13247.0
; Center = (460.75 320.5 0.0)
; Circumference = 408.004
; Diameter = 129.872
; Document (RO) = #<VLA-OBJECT IAcadDocument 0100af90>
; Handle (RO) = "1BC9"
; HasExtensionDictionary (RO) = 0
; Hyperlinks (RO) = #<VLA-OBJECT IAcadHyperlinks 03963364>
; Layer = "0"
; Linetype = "ByLayer"
; LinetypeScale = 1.0
; Lineweight = -1
; Normal = (0.0 0.0 1.0)
; ObjectID (RO) = 2130333128
; ObjectName (RO) = "AcDbCircle"
; OwnerID (RO) = 2130316536
; PlotStyleName = "ByLayer"
; Radius = 64.9358
; Thickness = 0.0
; TrueColor = #<VLA-OBJECT IAcadAcCmColor 03966e70>
; Visible = -1
; Methods supported:
; ArrayPolar (3)
; ArrayRectangular (6)
; Copy ()
; Delete ()
; GetBoundingBox (2)
; GetExtensionDictionary ()
; GetXData (3)
; Highlight (1)
; IntersectWith (2)
; Mirror (2)
; Mirror3D (3)
; Move (2)
; Offset (1)
; Rotate (2)
; Rotate3D (3)
; ScaleEntity (2)
; SetXData (2)
; TransformBy (1)
; Update ()

The list above shows all of the available properties and methods of the selected circle object. In this lecture I am
going to focus on the list of properties and invite you to return to my second lecture of “The AUGI LISP guild
Greatest Hits for Power LISPers”, to learn more about vla-object methods. The next example will demonstrate to
you how to change the layer property of a vla-object to be layer “0”.

The AUGI® LISP Forums Greatest Hits for Newbies

6

Example 8: vl-Layerzero.lsp
; This routine will change a selection to layer “0” using ActiveX Property manipulation
(defun C:vl-LayerZero (/ lstSelection ; list of selected item and selection point
 entSelection ; Entity name of selection
 objSelection ; VisualLISP ActiveX object (vla-object) of Selection
)
 (vl-load-com)
 (if (setq lstSelection (entsel “\nSelect item on screen: “))
 (progn
 (setq entSelection (car lstSelection)
 objSelection (vlax-ename->vla-object entSelection)
)
 (vla-put-layer objSelection “0”)
 ; (vlax-put-property objSelection “layer” “0”) ; Alternate
 ; (vlax-put objSelection “layer” “0”) ; Alternate
)
)
)

The format of the above routine should start to look very familiar to you by now. You will find that the format of
many lisp routine follow the above format only with slight variations. In this example the new routine name is
C:vl-LayerZero. The (vlax-dump-object…) expression has been removed and add this expression
(vla-put-layer objSelection “0”). This expression (as if you can’t guess) changes the layer of the object to be layer
“0” directly. I have included two other ways of doing the exact same thing as alternates. You may find that in
certain instances one or more of these will not work, and you need to test all three to find the one that does. I have
commented them out with the semicolon prefix on them.

Thats it! That is the power of Visual LISP®. You need to remember that some properties are in all objects, and
some are only in a few. Like the radius property is only in a circle, and not in a piece of text. These examples up to
now have only given the use the ability to change one entity at a time. In order to change multiple entities at one
time you need to create selection sets. The next example will change a selection set of objects to layer “0”

Example 7: SS-Layerzero.lsp
; This routine will change a selection set to layer “0” using ActiveX Property manipulation
(defun C:SS-LayerZero (/ entSelection ; Entity name of selection
 intCount ; Iteration Counter for Selections Set
 objSelection ; VisualLISP ActiveX object (vla-object) of Selection
 ssSelections ; Selection Set of Entities
)
 (vl-load-com)
 (princ “\nCreate Selection set to be changed to layer 0: “)
 (if (setq ssSelections (ssget))
 (repeat (setq intCount (sslength ssSelections))
 (setq intCount (1- intCount)
 entSelection (ssname ssSelections intCount)
 objSelection (vlax-ename->vla-object entSelection)
)
 (vla-put-layer objSelection “0”)
)
)
)

 Insert Class Title as per Title Page

 7

This new routine has a new name and a couple new variables, intCount and ssSelections I have introduced a
new expression (princ …) that creates a prompt on the command line for the user to select a selection set. The
variable ssSelections stores the selection set returned by the (ssget) expression. In order to change each
member of the selection set we need to repeat the property modification once for each member of the selection set.
To do this it uses the integer variable intCount to point at each item in the selection set. It first sets the integer
variable intCount to be the length of the selection set using the (sslength ssSelections) expression. Next
because selection sets are 0 indexed (means the first item in the list is the 0th item) you need to minus one from
the index, using the (setq intCount (1- intCount)) expression to minus one from intCount.

Then using the (ssname ssSelections intCount) expression we get the entity name of the indexed item from the
selection set. It converts the entity name into a vla-object using the (vlax-ename->vla-object entSelection) just
like before and then put the layer property to be layer “0”. We continue repeating inside the repeat expression for
every item in the selection set, incrementing the intCount index number down one for each repetition and setting
each item to be layer “0”.

As I had mentioned above some properties are exclusive to specific objects, like the radius of a circle. If you tried to
change the radius property of a piece of text you would get an error and your program would stop. In order to
prevent this, we can use a selection set filter to only allow the user to select items that have the right properties
that we want to change.

Example 6: CHRadius .lsp
; This routine will change the radius property of a selection set of circles
(defun C:CHRadius (/ intCount ; Iteration Counter for Selections Set
 objSelection ; VisualLISP ActiveX object (vla-object) of Selection
 sngRadius ; Single real number for New Radius length
 ssSelections ; Selection Set of Entities
)
 (vl-load-com)
 (princ “\nCreate Selection set to be changed to layer 0: “)
 (setq ssSelections (ssget (list (cons 0 “CIRCLE”))) ; <- Selection Set Filter
 sngRadius (getdist “\nEnter new radius: “) ; <- User input get distance
)
 (if (and ssSelections
 (> sngRadius 0.0)
)
 (repeat (setq intCount (sslength ssSelections))
 (setq intCount (1- intCount)
 objSelection (vlax-ename->vla-object
 (ssname ssSelections intCount)
)
)
 (vla-put-radius objSelection sngRadius); <- Change Radius Property
)
)
)

This new routine has the name CHRadius because it will change the radius of selected objects (circles). The single
real number sngRadius variable is added to the local variables. I removed the entSelection variable from the local
variables as I will explain later. The next change is I have added a partial entity list to the ssget expression. Like we

The AUGI® LISP Forums Greatest Hits for Newbies

8

saw in the first example entity lists are lists of dotted pairs, and sub-lists. In this example I use the list
expression and the cons expression to create a partial entity list (list (cons 0 “CIRCLE”)) returns ‘((0 .
“CIRCLE”)). The cons expression returns a dotted pair and list expression returns a list. This partial entity list tells
the ssget expression to only select entities that this dotted pair in their entity lists or select only circles. The next line I
use one of the user entry expressions getdist. The getdist will prompt the user for a length and the user can
respond in one of three methods. The first is a real number, the second is in feet and inches, or the third is selecting
two points on the screen. In AutoLISP there is also a getreal expression that only takes real numbers, and there
are several other user entry expressions including getint, getstring, getkword, getpoint, and getangle.

I also have added an if statement to check to see if the user has selected anything and if the sndRadius variable is
greater than 0.0, before proceeding with the changes. In the section of the routine where I convert the entity name
to vla-object, rather than store the entSelection variable and then convert it, I nested the ssname expression
inside the vlax-ename->vla-object expression. I really didn’t need to save the entity name to a variable because I
only use it once. The last modification to the routine was changing the property in the vla-put-radius expression.

This CHRadius.lsp routine is a template that we can now use to create many new useful functions. My next
function is ScaleRadius.lsp.

Example 5: ScaleRadius .lsp
; This routine will scale the radius properties of a selection set of circles
(defun C:ScaleRadius (/ intCount ; Iteration Counter for Selections Set
 objSelection ; vla-object of Selection
 sngScaleFactor ; Scale factor for radius property
 ssSelections ; Selection Set of Entities
)
 (vl-load-com)
 (princ “\nCreate Selection set to be changed to layer 0: “)
 (setq ssSelections (ssget (list (cons 0 “CIRCLE”))) ; <- Selection Set Filter
 sngScaleFactor (getdist “\nEnter scale factor: “) ; <- User input
)
 (if (and ssSelections
 (> sngScaleFactor 0.0)
)
 (repeat (setq intCount (sslength ssSelections))
 (setq intCount (1- intCount)
 objSelection (vlax-ename->vla-object
 (ssname ssSelections intCount)
)
)
 (vla-put-radius objSelection (* (vla-get-radius objSelection) sngScaleFactor))
)
)
)

This routine is again very similar to the previous example. I have changed the function name to ScaleRadius, and
substituted the sngScaleFactor for the sngRadius variables. I modified the getdist expression to prompt for a
scale factor instead of a radius, and modified the if statement to check to see if the sngScaleFactor is greater than
0.0. Now I have introduced a new expression in vla-get-radius that returns (or gets) the radius property of the
circle object. So the (vla-get-radius objSelection) returns the radius of the circle and multiplies the value times the
scale factor sngScaleFactor and use the vla-put-radius expression change the radius property of the circle object
to the new value.

 Insert Class Title as per Title Page

 9

This first routine will change a selection set of text to be upper case letters, and the next example will change the
selected text lowercase letters using the strcase expression. The string case strcase expression has the form
(strcase string [which]) and it will change a text string to uppercase letters, or if the [which] argument is
added and is T will change the letters to be lowercase letters.

Example 4: UpperCase .lsp
; This routine will change selected to be uppercase letters.
(defun C:UpperCase (/ intCount ; Iteration Counter for Selections Set
 objSelection ; vla-object of Selection
 ssSelections ; Selection Set of Entities
)
 (vl-load-com)
 (princ “\nSelect text to be uppercase: “)
 (setq ssSelections (ssget (list (cons 0 “TEXT,MTEXT”)))) ; <- Selection Set Filter
 (if ssSelections

 (repeat (setq intCount (sslength ssSelections))
 (setq intCount (1- intCount)
 objSelection (vlax-ename->vla-object
 (ssname ssSelections intCount)
)
)
 (vla-put-textstring objSelection (strcase (vla-get-textstring objSelection)))
)
)
)

Example 3: LowerCase .lsp
; This routine will change selected to be uppercase letters.
(defun C:LowerCase (/ intCount ; Iteration Counter for Selections Set
 objSelection ; vla-object of Selection
 ssSelections ; Selection Set of Entities
)
 (vl-load-com)
 (princ “\nSelect text to be lowercase: “)
 (setq ssSelections (ssget (list (cons 0 “TEXT,MTEXT”)))) ; <- Selection Set Filter
 (if ssSelections

 (repeat (setq intCount (sslength ssSelections))
 (setq intCount (1- intCount)
 objSelection (vlax-ename->vla-object
 (ssname ssSelections intCount)
)
)
 (vla-put-textstring objSelection (strcase (vla-get-textstring objSelection) ‘T))
)
)
)

The AUGI® LISP Forums Greatest Hits for Newbies

10

Example 2: Prefix .lsp

; This routine will add a string prefix to selected text.
(defun C:Prefix (/ intCount ; Iteration Counter for Selections Set
 objSelection ; vla-object of Selection
 ssSelections ; Selection Set of Entities
 strPrefix ; Prefix text string
)
 (vl-load-com)
 (princ “\nSelect text to be modified: “)
 (setq ssSelections (ssget (list (cons 0 “TEXT,MTEXT”))) ; <- Selection Set Filter
 strPrefix (getstring “\nEnter string Prefix: “) ; <- String entry
)
 (if ssSelections
 (repeat (setq intCount (sslength ssSelections))
 (setq intCount (1- intCount)
 objSelection (vlax-ename->vla-object
 (ssname ssSelections intCount)
)
)
 (vla-put-textstring objSelection (strcat strPrefix (vla-get-textstring objSelection)))
)
)
)

In this routine the name was changed to Prefix and a new variable was added strPrefix (str is the variable prefix
for string). The routine utilizes the string concatenation expression strcat to join two strings together. So it gets the
text property from each text object and adds the prefix onto it and then puts it back into the textstring property.

At this time I would like to continue by taking some suggestions from the audience. What kind of routine would you
like to see created. Can you give me several object types and properties to change and we will develop the
routines for them using this template.

Example 1: ???????????

I really hope you all learned a little and motivated you to learn more about programming Visual LISP. For those
interested in participating in the AUGI LISP forum go to www.augi.com and go to the forums tab. If you do not have
direct web access you can join me at the www.waun.org website and join in an email based discussion group.

 Please take the time to fill out the evaluation and Thank You for attending!

